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Expressions have been derived, from the standpoint of Gaussian random theory,
for the joint and marginal distributions of wave envelope amplitude and local wave
period when the sampling frequency is equal to the local wave frequency. The new
marginal p.d.f. for wave envelope amplitudes shows substantial non-zero probability
density at very small amplitudes. The new joint and marginal distributions are found
to compare favourably with data obtained from both high frequency measurements of
real ocean waves in extreme storms and from measurements of numerical simulations
of moderately broadbanded processes with Pierson–Moskowitz spectra. The new
p.d.f. of wave envelope amplitudes is found to provide a better approximation to the
p.d.f.s of the simulated zero down-crossing wave amplitude than either the traditional
Rayleigh p.d.f., applicable for infinitesimal bandwidth; or the narrow bandwidth
approximation given by M. S. Longuet-Higgins (Proc. R. Soc. Lond. A, 389: 241–
258, 1983). The reason for this improvement is that our method takes into account
that small waves are likely to have shorter periods than large waves, rather than
assuming a constant wave period. There are, however, limitations to the approach
adopted which assumes that the individual wave amplitudes can be obtained from
the amplitude of the wave envelope. These limitations become more severe as the
bandwidth increases. The results obtained apply not only to sea waves, but to any
Gaussian linear random process.

1. Introduction
Many results in the theory of random linear waves are derived upon the assumption

of a narrow band process. Indeed, when considering the envelope process in the
derivation of the Rayleigh distribution for wave amplitudes, an infinitesimally narrow
band is assumed. In this paper we examine what happens when the bandwidth
becomes finite. Although our discussion is given using the terminology appropriate
to surface gravity waves on the ocean, our results will be equally applicable to any
Gaussian linear random process.

First, and as illustrated in figure 1, we note that there is a correlation between
the wave amplitude, h, and the zero down-crossing wave period, T , measured from
real and simulated ocean wave records, η(t). Allowing for this when sampling from
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Figure 1. (a) A schematic illustration of the increase in local wave period with increasing
wave envelope amplitude, including notation. (b) An example from a wave record measured
in the North Sea. This phenomenon is ubiquitous in real broadband ocean wave data.

the wave envelope, A(t), yields distributions of wave amplitudes that contain terms
that depend on the bandwidth, ν (defined in (7)). These distributions are, therefore,
different from the Rayleigh distribution. In real seas it has been observed (Podgórski
et al. 2000) that there are frequently more small waves than predicted by the Rayleigh
distribution and our new distributions reflect these observations. The associated
marginal distributions for wave period and the joint distributions for amplitude and
period are also different from those previously obtained.

Second, we find that as the bandwidth becomes finite the wave envelope ceases to
be the loci of the amplitudes of the wave surface. As discussed later, this is associated
with loops in the phase diagram that do not encircle the origin. The inference from
this is that distributions and other characteristics derived from the envelope of a linear
random Gaussian process will yield only approximate results when the bandwidth is
finite. The inaccuracies become greater as the bandwidth increases, and one measure
of this error is obtained. The theoretical results presented here will apply not only to
sea waves, but to any narrow (but finite) bandwidth random linear process.
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Figure 2. Schematic phase plot and time plot for narrowband waves.

Thirdly, we compare the new distributions with existing distributions, and with
simulated and real wave data of different bandwidths. We also observe, consistent
with our theory, an interesting downward trend in mean amplitude as bandwidth
increases.

The general case of the distribution of maxima of a broadbanded process was
considered by Rice (1944, 1945) and, in the context of sea waves, by Cartwright &
Longuet-Higgins (1956). In the general case there may be more than one surface
maximum and more than one surface minimum associated with each zero-crossing
wave. This was the case considered by Cavanié et al. (1976) and Arhan et al. (1976) in
deriving their joint p.d.f. for waveheights and periods (for details in English see Ochi
1998). In the practical analysis of sea waves, however, it is usual to associate just one
maximum and one minimum, the largest, between sequential up or down-crossings.
Any maxima or minima smaller than the largest are ignored. Correspondingly, when
defining the wave period it is the interval between zero up or down-crossings that is
of interest. For practical purposes it is the joint probability of wave amplitude (or
height) and wave period that is of interest to naval architects and ocean engineers
estimating wave loadings and the response of dynamically sensitive structures. These
distributions should, ideally, be defined with at least the same degree of accuracy as
the other well-defined principal elements in such calculations; that is within 1 or 2%.
This is particularly important in the tails of the distributions where critical design
points are usually located. In practice, however, such accuracy is rarely achieved and
many calculations have errors of 10% or more.

For a general time-dependent narrowbanded analytic signal, denoted by η(t),
figure 2 shows its phasor rotating in the (η, η̂) Cartesian plane, where η̂(t) is the
Hilbert transform of η(t). For sufficiently narrowbanded signals there will be just
one maximum and one minimum per zero down-crossing. In this case the signal
amplitudes are almost exactly equal to (being very slightly less than) the amplitude
of the envelope at the same time. As indicated in the figure, the local phase, φ(t), is
always increasing with time and the rate of change of local phase, or local frequency,
φ̇(t), is always positive. Figure 3 illustrates the characteristics (somewhat exaggerated)
of the general broadband case where there may be more than one signal maximum or
minimum per zero down-crossing. These additional maxima and minima give rise to
loops in the (η, η̂) phase plane that do not encircle the origin. In such cases the signal
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Figure 3. Schematic phase plot and time plot for broadband waves. Regions of the phase
plot showing phase loops that do not encircle the origin are labelled (a), (b) and (c) and the
corresponding regions are labelled similarly in the time plot.

amplitude at its maxima and minima is not always equal to that of the envelope and
φ̇(t) can be negative.

When obtaining his joint distribution for the wave height and period of sea waves
Longuet-Higgins (1983) assumed a fixed sampling interval and bandwidth conditions
somewhat similar to those shown in figure 2. In § 3 of this paper we consider the same
conditions except that we sample the wave envelope, not at a constant rate, but at
the rate φ̇(t) which is not independent of the wave envelope amplitude. (At first sight
one might consider a Taylor series expansion of φ̇(t) in terms of the bandwidth ν in
order to estimate a more appropriate sampling interval. As illustrated in figure 3 and
discussed later, however, for any finite bandwidth φ̇(t) varies in a random manner
over the sampling interval and so a series expansion at any instant in time would need
to be impracticably long.) We also explore the case when the bandwidth increases
and small loops appear in the phase plots and φ̇(t) is occasionally negative. Thus,
two types of distribution are obtained: one where we sample at the local frequency,
φ̇(t), and it is assumed always to be positive; and one where we sample at the local
frequency and it is allowed to be negative. In both cases we take the amplitude, A,
of the wave envelope to be equal to the amplitude, h, of the zero down-crossing
wave. In the latter case this approach is inconsistent and becomes progressively less
accurate as the bandwidth increases. It is, however, interesting to compare the two
approaches and it is shown in § 4 that, although distributions obtained from both
approaches give good approximations to both simulated and real broadband data,
the better approximation is provided by the model which samples the wave envelope
only at times during which the local frequency is positive. This model is shown to
provide a clear improvement over that of Longuet-Higgins (1975, 1983).

2. Joint p.d.f. for wave envelope amplitude and local wave frequency
We start from the same basis as did Longuet-Higgins (1975, 1983), however, we

relax the restriction he imposed (which followed from the narrowband assumption)
that the local wave frequency, φ̇, be always positive . The result is a slightly different
joint p.d.f. for the wave envelope amplitude and local period. As may be anticipated,
the marginal distribution for the wave envelope amplitude remains Rayleigh. The



Joint probability distribution for ocean wave heights and periods 277

marginal distribution for the local wave period, however, is different from that
obtained by Longuet-Higgins (1983).

We start with the variables in their usual dimensions. The notation used herein
follows the convention that variables having physical units are denoted with
an asterisk superscript (∗) and those equivalent variables that have been non-
dimensionalized are denoted without the asterisk.

Following Longuet-Higgins (1975, 1983) the sea surface elevation is written as

η∗(t∗) =

∞∑
n=1

a∗
n cos(ω∗

nt
∗ + εn), (1)

where εn are random phases taken from a uniform distribution. The Hilbert transform
of η∗(t∗) is

η̂∗(t∗) =

∞∑
n=1

a∗
n sin(ω∗

nt
∗ + εn). (2)

The following is the analytic signal through which the real variables A∗ and φ are
defined

A∗(t∗)eiφ(t∗) = η∗(t∗) + iη̂∗(t∗). (3)

The variables of interest are A∗ which is the local wave amplitude or envelope
amplitude, and dφ/dt∗ = φ̇∗ which is the local wave frequency in radians.

Assuming η∗(t∗) is Gaussian distributed, the joint p.d.f. of A∗ and φ̇∗can be written
as

pA∗φ̇∗(A∗, φ̇∗) =
A∗2√

2πm∗
0

(
m∗

0m
∗
2 − m∗2

1

) exp

(
−

A∗2
(
m∗

2 − 2m∗
1φ̇

∗ + m∗
0φ̇

∗2
)

2
(
m∗

0m
∗
2 − m∗2

1

) )
, (4)

where the spectral moments are defined by

m∗
n =

∫ ∞

0

ω∗nS∗(ω∗) dω∗, n = 0, 1, 2, . . . , (5)

and where S∗(ω∗) is the one-sided frequency spectrum of the surface elevation η∗ and
ω∗ is the angular frequency. (Equation (4) is obtained by assuming that the statistics

of the variables η∗, η̂∗, η̇∗ and ̂̇η∗ are described by a joint Gaussian distribution,

applying a change of variables from (η∗, η̂∗, η̇∗, ̂̇η∗) to (A∗, Ȧ∗, φ∗, φ̇∗), and integrating
out the dependency on (Ȧ∗, φ∗).) For the lower order moments it can be shown (see
Ochi 1998, p. 104) that

m∗
0 = E[η∗2],

m∗
1 = E[η∗ ̂̇η∗],

m∗
2 = E[η̇∗2],

 (6)

where E[·] stands for the expectation value of (·). The equivalence of (4) and Longuet-
Higgins’ (1975) equation (A16) is demonstrated in Appendix A.

We will also be using the dimensionless bandwidth parameter (see Longuet-Higgins
1983) defined by

ν2 =
m∗

0m
∗
2

m∗2
1

− 1, (7)
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and the dimensionless envelope amplitude and local wave angular velocity defined by

A =
A∗√
2m∗

0

, (8)

φ̇ =
2πm∗

0φ̇
∗

m∗
1

. (9)

Equation (4) can be written in term of these dimensionless variables using the
transformation

pAφ̇(A, φ̇) = pA∗φ̇∗

(√
2m∗

0A,
m∗

1φ̇

2πm∗
0

) ∣∣∣∣dA∗

dA

∣∣∣∣ ∣∣∣∣dφ̇∗

dφ̇

∣∣∣∣ .

Substituting for ν from (7) yields

pAφ̇

(
A, φ̇

)
=

A2

π
√

πν
exp

[
−A2

ν2

(
φ̇2

4π2
− φ̇

π
+ ν2 + 1

)]
. (10)

Transforming to the dimensionless local period, defined by τ = 2π/φ̇ (which can,
therefore, take negative values), yields

pAτ (A, τ ) =
2A2

√
πντ 2

exp

[
− A2

ν2

(
1

τ 2
− 2

τ
+ ν2 + 1

)]
. (11)

Equation (11) is very similar to the joint p.d.f. given by (2.16) in Longuet-Higgins
(1983), the latter of which can be written

pLH(A, τ ) = NLH pAτ (A, τ ). (12)

The difference lies in the inclusion of a normalization factor

1

NLH

=

∫ ∞

0

dA

∫ ∞

0

pAτ (A, τ ) dτ = 1
2

(
1 + (1 + ν2)−1/2

)
. (13)

This ν-dependent normalization factor arises as a direct consequence of Longuet-
Higgins’ (1983) exclusion of negative values of φ̇, and therefore, by definition, of τ .
Here we impose no such restriction and allow τ to be negative so that∫ ∞

0

dA

∫ ∞

−∞
pAτ (A, τ ) dτ = 1.

The marginal p.d.f.s are given by

pA(A) =

∫ ∞

−∞
pAφ̇(A, φ̇) dφ̇ = 2A exp(−A2), (14)

pφ̇(φ̇) =

∫ ∞

0

pAφ̇(A, φ̇) dA =
ν2

4π

(
φ̇2

4π2
− φ̇

π
+ ν2 + 1

)−3/2

,

pτ (τ ) =

∫ ∞

0

pAτ (A, τ ) dA =
ν2

2τ 2

(
1

τ 2
− 2

τ
+ ν2 + 1

)−3/2

, (15)

since, for real values of ν and φ̇, it is always the case that

φ̇2

4π2
− φ̇

π
+ ν2 + 1 > 0,
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and therefore
1

τ 2
− 2

τ
+ ν2 + 1 > 0.

The expectation value of φ̇ is

E
[
φ̇
]

=

∫ ∞

−∞
φ̇ pφ̇(φ̇) dφ̇ = 2π, (16)

while the expectation value of τ is

E[τ ] =

∫ ∞

−∞
τ pτ (τ ) dτ = 1. (17)

The probability that φ̇ < 0 is

Pr
(
φ̇ < 0

)
= 1

2

(
1 − 1√

1 + ν2

)
=

ν2

4
+ O(ν4), (18)

and the probability that φ̇ > 0 is

Pr
(
φ̇ > 0

)
= 1

2

(
1 +

1√
1 + ν2

)
= 1 − ν2

4
+ O(ν4). (19)

From (11), (12) and (15) it can be seen that the marginal p.d.f. for zero-crossing
wave period, T , obtained by Longuet-Higgins (1983) is

pLH(T ) =
ν2NLH

2T 2

(
1

T 2
− 2

T
+ ν2 + 1

)−3/2

, (20)

where it is assumed that T can be represented by the local wave period, τ , when
the latter is non-negative. Also, the marginal p.d.f. for wave amplitude obtained by
Longuet-Higgins (1983) is given by

pLH(h) = NLH

∫ ∞

0

pAφ̇(h, φ̇) dφ̇ = NLHh exp(−h2)

[
1 + erf

(
h

ν

)]
, (21)

where NLH(ν) is given by (13).
The cumulative distribution corresponding to (20) is

PLH(T ) =
NLH

2

{
T − 1

[T 2(1 + ν2) − 2T + 1]1/2
+ 1

}
,

and that corresponding to (21) is

PLH(h) =
NLH

2

{
erf(

√
1 + 1/ν2h)√
1 + ν2

− exp(−h2)

[
1 + erf

(
h

ν

)]
+ 1

}
.

3. Sampling at the local wave frequency
In the narrowband approach the p.d.f. for individual wave amplitudes, h, is assumed

to be the same as the p.d.f. of the wave envelope amplitude, A. As noted above, real
sea waves of smaller amplitude tend to have shorter periods, reflected in a higher local
wave frequency and a higher zero crossing frequency of the wave surface. Therefore,
when the wave envelope amplitude is small one should sample the wave envelope at
a higher frequency to obtain the p.d.f. of the individual wave amplitudes.
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Here we start by establishing that the mean zero up-crossing frequency, denoted
fz, is simply related to the modulus of local wave frequency. We thus find the mean
zero up-crossing frequency and the mean zero down-crossing wave period, denoted
Tz. When the local wave frequency is assumed always to be positive we find the result
is slightly different.

We also establish a simple relation for the probability of occurrence of zero-
crossing waves having negative local wave frequency, φ̇. This relation is a function of
bandwidth. It is small waves such as those corresponding phase loop (a) in figure 3
that are ignored by assuming φ̇ is always positive.

We then find two new p.d.f.s for A by integrating the joint p.d.f. of A and φ̇. The
second new p.d.f. is obtained by constraining φ̇ to be positive.

3.1. Mean zero-crossing wave period

An individual wave is defined as that part of the surface elevation profile which
lies between any two consecutive zero down-crossings. It is assumed that the wave
heights are equal to twice the local wave envelope amplitude at the times of the zero
up-crossing which defines the centre of the wave. Therefore, to find the p.d.f. of wave
heights due consideration must be given to the variation of sampling frequency with
envelope amplitude.

Consider an ensemble of sea surface elevations each realisation of which is labelled
by n. Each sea surface elevation series is represented by an analytic signal like that in
(3). In an infinitesimal time interval δt between times t and t + δt a zero up-crossing
occurs in any one series if and only if η(t) < 0 and η(t + δt) > 0. As all values of φ are
equally likely, the probability that any one realization will have a zero up-crossing
between t and t + δt is given by the ratio of the arc swept out by the phasor in this
time (divided by 2π) to the total number of ensembles. This can be formulated as

Pr

(
zero upcrossing

between t and t + δt

)
= lim

N→∞
lim
δt→0

1

N

N∑
n=1

|φn(t + δt) − φn(t)|
2π

,

= lim
N→∞

1

2πN

N∑
n=1

|φ̇(t)|δt, (22)

where Pr (zero upcrossing between t and t + δt) is the probability of a zero up-crossing
in the infinitesimal time interval between t and t + δt . The absolute value is taken
because it is immaterial in which direction, clockwise or anti-clockwise, φ is increasing
at the time of the measurement – both positive and negative directions can give rise
to a zero up-crossing.

As the process is stationary and ergodic (by the defining equation (1)) the sum over
ensembles can be replaced by an integration over time and the rate, or frequency fz,
of zero up-crossing can be written, from (22), as

fz =
1

δt
Pr

(
zero upcrossing

between t and t + δt

)
,

= lim
T0→∞

1

2πT0

∫ T0

0

|φ̇(t)| dt.
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Alternatively, the time average of |φ̇(t)| may be written in the expectation notation
using the joint p.d.f. pAφ̇(A, φ̇) given by (10). The result is

fz =
1

2π
E[|φ̇(t)|] =

1

2π

∫ ∞

0

dA

∫ ∞

−∞
|φ̇| pAφ̇(A, φ̇) dφ̇. (23)

(The previous argument could have been bypassed and we could have simple started
with fz = E[|φ̇|]/2π which is fairly intuitive.)

Carrying out the integration over φ̇ in (23) yields

fz =
1

2π

∫ ∞

0

4π exp(−A2)

[
ν√
π

exp

(
−A2

ν2

)
+ A erf

(
A

ν

)]
dA (24)

Carrying out the integration over A in (24) yields

fz =
√

1 + ν2 =

√
m∗

0m
∗
2

m∗
1

. (25)

This is a standard result and is valid generally for a any ergodic broadband Gaussian
random process (see, for example, Newland 1984). The total number of zero up-
crossings expected in time T0 is fzT0, and so the average period between zero
up-crossings, which is equal to the average zero-crossing wave period, is

Tz = f −1
z ,

=
1√

1 + ν2
. (26)

3.2. Proportion of zero-crossing waves with φ̇ < 0

The ratio of the number of zero-crossings with φ̇ > 0 to the number with φ̇ < 0 can
be derived using a similar argument to that used in § 3.1 to find (25).

The frequency of zero up-crossings with φ̇ > 0 is given by

fz|φ̇>0 =
1

2π

∫ ∞

0

dA

∫ ∞

0

φ̇ pAφ̇(A, φ̇) dφ̇ =

√
1 + ν2 + 1

2
.

The frequency of zero up-crossings with φ̇ < 0 is given by

fz|φ̇<0 =
1

2π

∫ ∞

0

dA

∫ 0

−∞
−φ̇ pAφ̇(A, φ̇) dφ̇ =

√
1 + ν2 − 1

2
.

Thus, we see that the frequency, or rate, of zero-crossings with loci in the (η, η̂)
phase plane that encircle the origin (for example, all the waves in figure 2) is
(
√

1 + ν2 +1)/2, and the frequency of zero-crossings with loci that do not encircle the
origin (for example, the small wave giving rise to the phase loop (a) in figure 3) is
(
√

1 + ν2 − 1)/2. The ratio, ρ, of phase loop zero-crossing waves to the total number
of zero-crossing waves is

ρ =
1

2

(
1 − 1√

1 + ν2

)
=

ν2

4
+ O(ν4). (27)

It is interesting to note that for any finite bandwidth there will be at least some zero-
crossing waves associated with negative local frequency and that this will increase, in
the first instance, with the square of the bandwidth. This result is useful in giving a
measure of the level of approximation involved in using the narrowband assumption
and the other assumptions made in this paper.



282 P. Stansell, J. Wolfram and B. Linfoot

3.3. Envelope amplitude sampled at the local wave frequency

In the same way that the p.d.f. for the wave envelope amplitude sampled at regular
intervals is given by the Rayleigh p.d.f.

R(A) =

∫ ∞

−∞
pAφ̇(A, φ̇) dφ̇ = 2A exp(−A2), (28)

the p.d.f. of the wave envelope amplitude sampled at the local wave frequency, which
we denote using the subscript h in anticipation of its relation to the p.d.f. of waves
amplitudes, is given by

ph(A) = N

∫ ∞

−∞
|φ̇| pAφ̇(A, φ̇) dφ̇, (29)

where N is a ν-dependent normalization factor given by

N =

[∫ ∞

0

dA

∫ ∞

−∞
|φ̇| pAφ̇(A, φ̇) dφ̇

]−1

.

The values of these last two integrals have already been calculated ((23)–(25)) giving,
respectively,

ph(A) =
2√

1 + ν2
exp(−A2)

[
ν√
π

exp

(
−A2

ν2

)
+ A erf

(
A

ν

)]
, (30)

and

N =
1

2π
√

1 + ν2
. (31)

The cumulative distribution corresponding to (30) is

Ph(A) = erf

(√
1 +

1

ν2
A

)
− 1√

1 + ν2
exp(−A2)erf

(
A

ν

)
. (32)

We now deal with the case in which we make the approximation that the wave
process is sufficiently narrowbanded to allow us to ignore all regions of the envelope
for which φ̇ < 0. In this case (29) is modified to give

phn
(A) = Nn

∫ ∞

0

φ̇ pAφ̇(A, φ̇) dφ̇, (33)

where Nn is a ν-dependent normalization factor which evaluates to

Nn =
1

π(1 +
√

1 + ν2)
. (34)

The n subscript on phn
and Nn stands for the inclusion of non-negative φ̇ only.

The value of the integral in (33) evaluates to

phn
(A) =

2

1 +
√

1 + ν2
exp(−A2)

(
ν√
π

exp

(
−A2

ν2

)
+ A

(
1 + erf

(
A

ν

)))
, (35)

and the associated cumulative distribution is

Phn
(A) =

1

1 +
√

1 + ν2

{√
1 + ν2erf

(√
1 +

1

ν2
A

)
− exp(−A2)

[
1 + erf

(
A

ν

)]
+ 1

}
.
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Note that neither (30) nor (35) are the same as the p.d.f. for heights of maxima
derived by Cartwright & Longuet-Higgins (1956), as the latter is a function of the
fourth order spectral moment, whereas the former are not. Taking the narrowband
limit of (30) or (35) gives, in both cases, the Rayleigh p.d.f.

One significant difference arising from this new approach is the high density of
small amplitudes given by the p.d.f.s in (30) and (35) as compared to the zero density
given by (28). In the limit of zero A we have

lim
A→0

ph(A) =
2ν

√
π

√
1 + ν2

,

lim
A→0

phn
(A) =

2ν
√

π
(
1 +

√
1 + ν2

) ,

whereas, from (28), we have

lim
A→0

R(A) = 0.

The high density of small waves in the new models leads to an expectation value of
A which decreases with increasing ν. The expectation value of A calculated from R(A),
given by (28), is E[A] =

√
π/2, whereas those calculated from the new distributions

(30) and (35) are functions of ν given by

E[A]h =

∫ ∞

0

Aph(A) dA =
ν + arctan(1/ν)

√
π

√
1 + ν2

, (36)

E[A]hn
=

∫ ∞

0

Aphn
(A) dA =

π + 2(ν + arctan(1/ν))

2
√

π(1 +
√

1 + ν2)
. (37)

Note that from the distribution of Longuet-Higgins (1983) given by (21) the expec-
tation value of A is calculated as

E[A]LH =

∫ ∞

0

ApLH(A) dA =
NLH(π(1 + ν2) + 2 arctan(1/ν)(1 + ν2) + 2ν)

4
√

π(1 + ν2)
, (38)

where NLH is given by (13). This last result for E[A] contrasts with the results from the
new distributions as it predicts the expectation value of A to increase with increasing
ν. These variations of mean amplitude with ν are compared with real and simulated
data in § 4 below.

Now we examine the large A limit. In the limit of large A the difference between
the Rayleigh p.d.f. and those given by (30) and (35) can be expressed in terms of ν as

lim
A→∞

ph(A)

R(A)
=

1√
1 + ν2

. (39)

lim
A→∞

phn
(A)

R(A)
=

2

1 +
√

1 + ν2
. (40)

In fact, (39) and (40) are accurate even for high values of ν when A is relatively small,
say A> 1. The equivalent result for the density derived by Longuet-Higgins (1983) is

lim
A→∞

pLH(A)

R(A)
= NLH, (41)

where NLH is a function of ν given by (13). These last three equations show that
in the tail of the density function the prediction of pLH(A) is greater than that of
R(A), whereas those of ph(A) and phn

(A) are both less than R(A). Thus, the new
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distributions predict a decreasing number of large waves, compared to Rayleigh, as
bandwidth increases.

3.4. Joint p.d.f. for envelope amplitude and period sampled at the local wave frequency

In this section we derive joint p.d.f.s for envelope amplitude and local zero-crossing
wave period when the wave is sampled at the local wave frequency φ̇. The local
zero-crossing wave period is denoted by T and constrained to be always positive
(unlike φ̇).

We know that ph(A) can be written as

ph(A) =

∫ ∞

0

phT (A, T ) dT , (42)

for some phT (A, T ) which is defined as the joint p.d.f. of envelope amplitude, and some
T which is a non-negative measure of local zero-crossing wave period. We define our
non-negative measure of local zero down-crossing wave period by T ≡ 2π/|φ̇|. This
T is the closest we can get to a surrogate for the non-local measure of zero-crossing
wave period which is obtained as the time between consecutive zero down-crossings
in real ocean wave time series (see (48) and the text following for support of this
statement). The later obviously cannot be negative. The form of phT (A, T ) in (42) can
be deduced by writing (29) in the following form for which we integrate only over
positive values of φ̇:

ph(A) = N

∫ ∞

0

|φ̇| [pAφ̇(A, |φ̇|) + pAφ̇(A, −|φ̇|)] d|φ̇|,

and making a change of variables from |φ̇| to T we have

ph(A) = −N

∫ ∞

0

2π

T

[
pAφ̇

(
A,

2π

T

)
+ pAφ̇

(
A, −2π

T

)]
d|φ̇|
dT

dT . (43)

By comparing (42) and (43) the joint p.d.f. of h and T is seen to be

phT (A, T ) =
4π2N

T 3

[
pAφ̇

(
A,

2π

T

)
+ pAφ̇

(
A, −2π

T

)]
, T > 0, A > 0,

=
4π2N

T 3

h2

π
√

πν

{
exp

[
−h2

ν2

(
1

T 2
− 2

T
+ ν2 + 1

)]
+ exp

[
−h2

ν2

(
1

T 2
+

2

T
+ ν2 + 1

)]}
, T > 0, A > 0.

where we have used (10). Substituting N from (31), the final result simplifies to

phT (A, T ) =
4

ν
√

1 + ν2
√

π

A2

T 3
cosh

(
2A2

ν2T

)
exp

[
−A2

ν2

(
1

T 2
+ ν2 + 1

)]
,

T > 0, A > 0. (44)

Using the p.d.f. of local envelope amplitude and local period, pAτ (A, τ ) given by
(11), (44) can also be written as

phT (A, T ) =
1√

1 + ν2 T

[
1 + exp

(
−4A2

ν2T

)]
pAτ (A, T ), T > 0, A > 0.

We now obtain a slightly different joint p.d.f. by carrying out the same procedure
as that given above except we exclude all regions of the wave series for which φ̇ < 0.
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The left-hand side of (33) can also be written as

phn
(A) =

∫ ∞

0

phnT (A, T ) dT , (45)

and comparing this to the result after transforming variables in (33) gives

phnT (A, T ) =
4π2Nn

T 3

h2

π
√

πν
exp

[
−A2

ν2

(
1

T 2
− 2

T
+ ν2 + 1

)]
, T > 0, A > 0.

Substituting Nn from (34), the final result simplifies to

phnT (A, T ) =
4

ν
(
1 +

√
1 + ν2

) √
π

A2

T 3
exp

[
−A2

ν2

(
1

T 2
− 2

T
+ ν2 + 1

)]
,

T > 0, A > 0. (46)

3.5. Marginal p.d.f. for wave periods

The marginal p.d.f. for wave period is derived from (44) by integrating out the A

dependency using

pT (T ) =

∫ ∞

0

phT (A, T ) dA.

Evaluating this integral gives

pT (T ) =
ν2

2
√

1 + ν2

{
[(1 + ν2)T 2 + 2T + 1]−3/2 + [(1 + ν2)T 2 − 2T + 1]−3/2

}
. (47)

The cumulative distribution corresponding to Equation (47) is

PT (T ) =
1

2
√

1 + ν2

[
(1 + ν2)T + 1√

(1 + ν2)T 2 + 2T + 1
+

(1 + ν2)T − 1√
(1 + ν2)T 2 − 2T + 1

]
.

The mean zero-crossing wave period, Tz, can be calculated as the expectation value
of the local wave period, T , which is

E[T ] =

∫ ∞

0

TpT (T ) dT =
1√

1 + ν2
. (48)

From (26) and (48) we see that E[T ] = Tz; thus our local wave period T , defined by
T ≡ 2π/|φ̇|, is representative of a local zero-crossing wave period since its expectation
value is equal to the average zero-crossing wave period Tz.

For the case when negative φ̇ are ignored the marginal p.d.f. for wave period is
derived from (46) by

pTn
(T ) =

∫ ∞

0

phnT (A, T ) dA.

Evaluating this integral gives

pTn
(T ) =

ν2

(1 +
√

1 + ν2)
[T 2(1 + ν2) − 2T + 1]−3/2. (49)

The cumulative distribution corresponding to (49) is

PTn
(T ) =

1

1 +
√

1 + ν2

[
(1 + ν2)T − 1√

(1 + ν2)T 2 − 2T + 1
+ 1

]
.
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The expected zero-crossing wave period for the case when φ̇ < 0 are excluded can
be shown to be the same as that given by (48), that is to say

E [Tn] =

∫ ∞

0

TpTn
(T ) dT =

1√
1 + ν2

.

As was the case for wave amplitudes, a significant difference from this new approach
is the prediction of a high density of small period waves. In the limit of zero T the
p.d.f.s in (47) and (49) give

lim
T →0

pT (T ) =
ν2

√
1 + ν2

,

lim
T →0

pTn
(T ) =

ν2

1 +
√

1 + ν2
,

whereas, from (20), we have

lim
T →0

pLH(T ) = 0.

Another significant difference is the behaviour in the limit of large T . From (47) and
(49) we have

lim
T →∞

pT (T ) ∼ lim
T →∞

pTn
(T ) ∼ 1

T 3
,

whereas, from (20) we have

lim
T →∞

pLH(T ) ∼ 1

T 2
.

Thus, as stated by Longuet-Higgins (1983), the mean period cannot be calculated
from (20) since ∫ ∞

0

TpLH(T ) dT → ∞.

4. Comparisons of theory with simulated and measured ocean wave data
Here we present comparisons between the theoretical distributions derived in

previous sections and measurements from numerically simulated data and from real
ocean waves.

4.1. Pierson–Moskowitz spectrum

The simulated data was produced from a Pierson–Moskowitz spectrum using Matlab
in conjunction with routines from the WAFO (Brodtkorb et al. 2000; WAFO Version
2.0.3 2000) toolbox. Specifically, a set of zero-mean Gaussian wave-trains, η∗(t∗), were
simulated from a Pierson–Moskowitz spectrum. The spectrum had a peak frequency
T ∗

p =15.754s and a significant wave height H ∗
m0

= 10.358m. The frequency range of the

spectrum was 0 to 4rad s−1 divided into 217 individual discrete frequency components.
Ten such wave trains were produced in all, each having a duration of 400 min and
a sampling frequency of 10 Hz. The total number of simulated zero down-crossing
waves analysed was 21 261.

The formula used for the Pierson–Moskowitz spectrum was

S∗
PM(ω∗) = 0.11 H ∗2

m0

(
2π

T ∗
m01

)4

ω∗−5 exp

[
−0.44

(
2π

T ∗
m01

ω∗

)4
]

,
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where

T ∗
m01

= 0.7713 T ∗
p ,

and

T ∗
m01

=
2πm∗

0

m∗
1

From the simulated wave-train the zeroth, first and second-order spectral moments
were calculated directly from the time series of surface elevation by

m∗
0 = η∗2,

m∗
1 = η∗ ̂̇η∗,

m∗
2 = η̇∗2.

 (50)

From (7) the bandwidth was calculated to be ν = 0.4041.
From η∗(t∗) measurements were made to determine the values of all H ∗

c , defined
as the vertical distance from the mean sea level to the crest maximum, and all H ∗

t ,
defined as the vertical distance from the mean sea level to the trough minimum.
These height variables were then non-dimensionalized using the same scaling as
that used in (8). Both Hc and Ht are always positive and the non-dimensionalized
waveheight is given by their sum H = Ht + Hc. Also measured from η∗(t∗) were the
four quarter periods associated with each wave. These are defined as: T ∗

1 , the time
between the first zero down-crossing and the trough minimum; T ∗

2 , the time between
the trough minimum and zero up-crossing; T ∗

3 , the time between the zero up-crossing
and the crest maximum; T ∗

4 , the time between the crest maximum and the second
zero down-crossing. The quarter periods were then non-dimensionalized using the
same scaling as that used in (9). The non-dimensionalized wave period is given by
T = T1 + T2 + T3 + T4.

Since the simulated wave train was Gaussian it was symmetric about its zero-
mean and so, in order to maximize the data available, all the values of crest heights
and trough depths were combined into a single wave amplitude dataset, denoted
by h = {Hc

⋃
Ht}. Also, as the theoretical p.d.f.s for wave period predict, strictly

speaking, values for a local wave period, it is expected that the use of quarter periods
measured from the simulations will compare better with the theoretical predictions
than measurements of whole zero down-crossing periods. The measured values of
quarter periods where multiplied by 4 (to scale them to full period size) and combined
to give a larger statistical sample. This gives the dataset of measured quarter periods
as Tq = {4T1

⋃
4T2

⋃
4T3

⋃
4T4}.

Figure 4 shows comparisons between the simulated data so produced and the
theories. Shown side-by-side in this figure are predictions and estimates for the
various densities (a), and the corresponding probability–probability (p–p) plots (b).
The estimated densities were produced using standard kernel density estimation with
Gaussian kernels (Silverman 1986). The uppermost pair of plots show comparisons
between the measured wave amplitude, h, and theory. It is clear that for the simulated
data the density is non-zero as h → 0. This is predicted by both ph(h) and phn

(h)
given by (30) and (35). It can also be seen that pLH(h) given by (21) provides a
poorer fit to the data than the basic Rayleigh density R(h), the former being lower
for small waves and higher for large waves. The associated p–p plot confirms that
pLH(h) provides a worse fit than R(h), and that ph(h) and phn

(h) fit the data better
for small wave amplitudes. It appears that the best fit for large h is given by R(h).
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Figure 4. (a) comparisons between theoretical predictions (with ν = 0.4041) and measure-
ments of the probability densities of wave amplitude, quarter period and whole period made
from simulated wave data. (b) corresponding probability–probability plots. (Note that the
scaling in the top right plot is set to 2 which means that the horizontal distance between
the line of equality and data has been doubled in improve clarity of this figure.)
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Figure 5. (a) joint density for wave amplitude and quarter period measured from simulated
data (specifically: joint density of combined dataset consisting to the following data pairs
(4T1, Ht ), (4T2, Ht ), (4T3, Hc) and (4T4, Hc)). (b) joint density for wave amplitude and whole
period measured from simulated data (specifically: joint density of dataset consisting to the
following data pairs (T , (Ht + Hc)/2)). (c) Corresponding prediction of phn

(h, Tq ) from (46)
with ν = 0.4041. (d) Corresponding prediction of pLH(h, Tq ) from (12) with ν = 0.4041.

The middle and lower pairs of plots in figure 4 show the results for quarter periods,
Tq , and whole periods, T , respectively. None of the theories make particularly good
predictions of the simulation results for period or quarter period, although, from the
p–p plots for quarter periods it seems that the predictions of (47) and (49) are better
than that of (20).

Figure 5 shows the joint p.d.f.s for wave period and amplitude. For all four plots
the contour lines are set at the same levels. Figure 5(a) shows the joint p.d.f. of
data pairs (h, Tq) = {(Ht, 4T1)

⋃
(Ht, 4T2)

⋃
(Hc, 4T3)

⋃
(Hc, 4T4)} obtained from the

simulated data. Figure 5(b) shows the same as (a) but for whole periods instead of
scaled quarter periods, that is to say, (h, T ) = {(Ht, T )

⋃
(Hc, T )}. Figure 5(c) shows

the joint density phn
(h, Tq), predicted by (46) with ν =0.4041, and figure 5(d) shows

pLH(h, Tq), predicted by (12) with ν = 0.4041. With the contour levels used here, the
plots of ph(h, Tq) and phn

(h, Tq) are found to be almost indistinguishable. However,
phn

(h, Tq) is presented in figure 5 (and later in figure 7) as it provides a slightly better
fit to the data as it extends slightly less into the higher wave-period region.
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Number of Total number
Storm 20 minute of waves in H ∗ max (H ∗) T ∗ max(T ∗)

ID records unfiltered data (m) (m) (s) (s)

23 177 25 632 5.437 21.94 10.61 21.65
25 111 17 348 4.796 15.88 9.89 17.91

124 173 21 942 5.847 21.14 10.85 28.71
195 201 30 084 4.857 18.72 10.28 20.80

Combined 662 95 006 5.266 21.94 10.45 28.71

Table 1. Summary of real storm data.

It is clear from these four plots that phn
(h, Tq) shows fairly good agreement with

the scaled quarter periods, whereas pLH(h, Tq) suffers from a higher density of large
wave periods, but neither make particularly good predictions when whole periods are
considered.

4.2. Real ocean wave data

The real wave data used in this study were collected continuously over the durations
of four separate severe storms in the northern North Sea. The data, totalling nearly
221 hours, are divided into 662 surface elevation time series each of 20-min duration.
The four storms are of varying bandwidth but all are essentially uni-modal wind-
driven seas without significant swell. The mean of the bandwidth was ν = 0.68, with
a standard deviation of 0.16. The instrumentation used for data collection were laser
altimeters sampling at 5Hz and mounted on the underside of the deck platform of
the North Alwyn fixed steel jacket oil and gas platform, operated by TotalFinaElf.

Note that the wave records are wholly unfiltered, not being smoothed by any means
other than that arising from the finite sampling rate of the measurement instruments.
All zero-downcrossing waves were identified in these records and measured from each
were: crest amplitude, trough amplitude, quarter periods and whole periods. A more
detailed summary of the data from these storms, identified as Storms 23, 25, 124 and
195, is given in Table 1.

The real data is not statistically stationary and so it was not sensible to use any
single values for m∗

0 and m∗
1 to non-dimensionalize the whole dataset. Instead, the

data were divided into sections of 20-min duration and sets of values of H ∗
c , H ∗

t ,
and T ∗

i , i =1, 2, 3, 4, were measured from each. Local values of m∗
0 or m∗

1 where also
calculated from each 20-min section and these where then used to non-dimensionalize
the appropriate amplitudes and periods according to (8) and (9).

In the real data, due to its highly nonlinear nature, the distributions of wave
crest height and trough depth differ markedly. We therefore use h = (Ht + Hc)/2
to representative wave amplitude measured from the real data. Figure 6 shows
comparisons of the non-dimensionalized real wave data with the theories. The mean
value of ν = 0.68 was used in the theoretical predictions. Shown side-by-side are
predictions for the various densities (a) and the corresponding p–p plots (b). The
uppermost pair show comparisons of measured wave amplitudes with theory. For
the real data it is again clear that the density is non-zero as h → 0 and, as with the
simulated data, this is predicted by both ph(h) and phn

(h) but not by pLH(h) or R(h).
Again, the prediction of pLH(h) fits least well and is worse than that of R(h). The
associated p–p plots suggest that pLH(h) gives the poorest fit and phn

(h) gives the
best.
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Figure 6. (a) comparisons between theoretical predictions (with ν = 0.63) and measurements
of the probability densities of wave amplitude, quarter period and whole period made from
real ocean wave data. (b) corresponding probability–probability plots.

The middle and lower pairs of plots in figure 6 show the real data results for
quarter periods and whole periods respectively. The measured quarter periods were
calculated in the same way as they were for the simulation data above. As with the
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Figure 7. (a) joint density for wave amplitude and quarter period measured from real ocean
wave data (specifically: joint density of combined dataset consisting to the following data pairs
(4T1, Ht ), (4T2, Ht ), (4T3, Hc) and (4T4, Hc)). (b) joint density for wave amplitude and whole
period measured from real ocean wave data (specifically: joint density of dataset consisting
to the following data pairs (T , (Ht + Hc)/2)). (c) Corresponding prediction of phn

(h, Tq ) from
(46) with ν = 0.63. (d) Corresponding prediction of pLH(h, Tq ) from (12) with ν = 0.63.

simulated data, none of the theories makes particularly good predictions for periods
or quarter periods.

Figure 7 shows the joint p.d.f.s for wave periods and amplitudes measured from the
real data. For all four plots the contour lines are set at the same levels as in figure 5.

Figure 7(a) shows the joint p.d.f. of data pairs (h, Tq) = {(Ht, 4T1)
⋃

(Ht, 4T2)⋃
(Hc, 4T3)

⋃
(Hc, 4T4)}. Figure 7(b) shows the same as (a) but for whole periods

instead of scaled quarter periods, that is to say, (h, T ) = {(Ht, T )
⋃

(Hc, T )}. Figure 7(c)
shows the joint density phn

(h, T ) and figure 7(d) shows pLH(h, T ), both with
ν =0.68.

It is clear from these four plots that phn
(h, T ) shows fairly good agreement with

the scaled quarter periods, whereas pLH(h, T ) suffers from a higher density of large
wave periods, but neither make particularly good predictions when whole periods are
considered.



Joint probability distribution for ocean wave heights and periods 293

Figure 8. Comparisons of the predictions of E[A](ν) from equations (36), (37) and (38) with
results obtained from simulated and real data.

The unrealistically high density of large wave periods predicted by pLH(h, T ) is
even more pronounced than for the simulated data because of the larger value of ν

in this case. The predictions for the p.d.f. of wave amplitude and whole wave period
are poor for all theories but, as with the simulated data, it is suggested that phn

(h, T )
fits better than pLH(h, T ).

A further comparison between the various models was made by comparing the
values of E[A] predicted by (36), (37) and (38) with the values obtained from the real
and simulated data. These comparisons are shown in figure 8. The simulated data
provide one mean value of h at ν = 0.4041 and, as can be seen in the figure, this
point falls very close the to prediction E[A]hn

of (37). From the real data, values of
ν and mean values of h where calculated from each of the locally stationary 20-min
records. As these raw values show significant scatter, the local regression procedure
locfit (Loader, 1999; locfit is implemented in the R and S-Plus statistical analysis
packages) was used to find a non-parametric estimate of the relationship between h

with ν in the real data. This local regression, along with its 95% confidence intervals,
is also plotted in figure 8; it closely follows the predictions of (37) for moderately
broad bandwidths.

5. Discussion
The results presented here apply to any narrowband linear random process, as do the

earlier results of Longuet-Higgins (1983). The results presented here, however, account
for the correlation between wave period and amplitude by adjusting the frequency
at which the wave envelope is sampled. In this respect, they are an improvement on
the results of Longuet-Higgins (1983) where these effects are not included. However,
none of the new results provides exact distributions when the bandwidth is finite.

The effect on the wave amplitude of the small loops in the phase plane that do not
encircle the origin is not accounted for in the present theory. The wave amplitudes
associated with these loops may be about half the loop radius, but we used the
distance from the origin to the wave envelope in the (η, η̂) phase plane to represent
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this wave amplitude. Thus, as illustrated in figure 3, in the region of these loops the
wave amplitude is not the same as the envelope amplitude. Because of this, even if
we sample the wave envelope at the actual zero down-crossing frequency as opposed
to the local frequency, the resulting distribution would not be the distribution of
wave amplitudes. Clearly, for a general broadband approach one cannot use the wave
envelope to represent the wave amplitude.

Also, it is clear that Longuet-Higgins’ assumption of a local wave frequency that
is always positive and slowly varying is not realizable in practice, even for narrow
bandwidths. For any finite bandwidth there will be some regions where φ̇ is negative,
and within less than a wave cycle it will return to typical positive values. There will
be local maxima corresponding to such regions and so approaches to deriving the
Rayleigh distribution for amplitudes based on the assumption of one maxima per
zero up crossing (for example, Newland 1984), will also be in error for any finite
bandwidth. Equations (18) and (27) are useful in this context as they give a bandwidth
related measure of the error involved in the assumption of non-negative φ̇. For much
real data, however, the region in which the local wave frequency is negative is small
and so the number of small loops, and the related error, will be comparatively small.
For example, from (27) the proportion of waves that are associated with φ̇ < 0 is
about 3.6% for ν = 0.4, 7.1% for ν = 0.6 and 11% for ν = 0.8. One would expect,
therefore, the models presented here to be best suited to the moderate bandwidths
that are frequently observed in Metocean data.

When compared with measurements of wave amplitude from simulated data and
waveheight from real data we find that, overall, the new distributions presented here
provide better fits than either the Rayleigh distribution or the bandwidth dependent
distribution of Longuet-Higgins (1983). Clearly, sampling from the wave envelope at
the local wave frequency leads to an improved distribution for wave amplitudes.
Likewise, the new joint distributions for wave amplitude and period provide a
somewhat better fit to both the simulated and real wave data than does the joint
distribution of Longuet-Higgins (1983).

In the limit of the bandwidth tending to zero our marginal distributions, ph(A)
and phn

(A), and that of Longuet-Higgins (1983), pLH(A), all converge to the Rayleigh
distribution. But it seems from our analysis that as ν moves away from zero the
density pLH(A) changes shape in a way that is the opposite to the shape change
measured from real or simulated data. This is seen in the upper pairs of plots in
both figures 4 and 6. Compared to the Rayleigh density the density of the measured
data of finite bandwidth shows an increase for small wave amplitudes and a decrease
for wave amplitudes around the mode of the distribution. This is predicted by the
both ph(A) and phn

(A); but contrasts, however, with the prediction of pLH(A) which
shows a decrease for small amplitudes and an increase for amplitudes around the
mode. These differences between the distributions lead to differences in predictions
of mean waveheight, E[A], as a function of bandwidth. The different predictions for
E[A] are plotted in figure 8. They clearly show that pLH(A) gives an increases in
E[A] with increasing ν, whereas ph(A) and phn

(A), and the measurements from the
simulated and real data, all show E[A] decreasing with increasing ν. Our samples of
real wind-driven storm waves from the northern North Sea are found to have quite a
large range of bandwidths: from ν ≈ 0.4 to 1.06. At ν ≈ 0.8 the Rayleigh distribution
over predicts the mean waveheight of this sample of real data by about 7% and the
Longuet-Higgins distribution over predicts by about 12%. Clearly, phn

(A) provides
the best fit, whereas ph(A) significantly under predicts the mean height and so is not
recommended for practical use.
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As seen from the p.d.f. and p–p plots in figure 4, for the simulated data the measured
density of wave amplitude is fitted best by different marginal density functions in
different amplitude regions: for the region below the mode the best fit is given by
ph(A); for the region above the mode, by phn

(A); and for the region of largest wave
amplitudes, by the Rayleigh density. Over the whole probability range, however, the
best fit is provided by phn

(A). As can be seen in figure 6, the best overall fit for the
real data is also provided by phn

(A).
As seen in figures 5 and 7, the new joint probability models seem to predict the

amplitudes and quarter periods for real data tolerably well, perhaps indicating that
π/2|φ̇| is a good surrogate for the quarter period. However, this is not well borne
out by the marginal density plots in figures 4 and 6. One is left to conclude that
φ̇ varies too rapidly over the time interval of a real wave to be considered as a
good surrogate for time period, and other approaches need to be considered. At least
the marginal distributions presented here, unlike that of Longuet-Higgins, can be
integrated directly to give the correct mean periods.

Whilst the joint probability and marginal distributions presented here are developed
from random linear theory, they may be expected to give reasonable predictions of
waveheight up to second order. This is because, in the theory of second-order surface
gravity waves, the increased amplitude of the crest is exactly offset by the reduced
amplitude of the trough. The general predictive success of the upper tail of the
Rayleigh distribution may be similarly attributed. The real wave data presented here
are from severe storms and are significantly nonlinear, yet, as stated previously, it
is clear from the p–p plots in figure 6 that the new marginal p.d.f. for waveheight,
phn

(h), gives quite a good overall fit to these data.
Interestingly, the density pLH(h) predicts a higher occurrence of large waves than

Rayleigh as the bandwidth increases from zero, whereas the new densities ph(h)
and phn

(h) predict a lower occurrence. The differences in the bandwidth-dependent
predictions for the extreme value distributions between the various models only
becomes significant for very high values of ν. For ν = 1 the difference in the positions
of the modes of the extreme value densities is just 6%. Resulting variations in
estimates of extreme loading would likewise be affected: for Morison inertia, which
is linear in H , the loadings differ by about 6%; for Morison drag, which is quadratic
in H , the difference will be around 12%. Furthermore, as there are more small
waves and less waves of moderate height in the proposed distributions, estimates of
wave-induced fatigue damage would be affected to a greater degree.

Unlike the joint p.d.f. of Longuet-Higgins, the new models do not predict extremely
long wave periods at around the average amplitude. They do, however, predict periods
longer than those observed in either the real or simulated data. This is of practical
significance when considering low frequency motions associated with mooring systems
of ships and floating offshore platforms.

6. Conclusions
Joint and marginal p.d.f.s have been derived for envelope amplitudes and local

zero-crossing wave periods of a finite bandwidth Gaussian process sampled at the
local frequency. In attempting to obtaining a p.d.f. for wave amplitude from envelope
amplitude the logic of sampling the wave envelope at the local wave frequency is
undeniably an improvement over the constant sampling rate implicit in the Rayleigh
and Longuet-Higgins (1983) distributions. Thus, for moderately broadband spectra
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the new joint and marginal p.d.f.s are shown to provide improved fits. The density
phn

(h) was found to give the best overall fit for both the p.d.f. of wave amplitudes
measured from simulated data and that of wave heights measured from real data.
Similarly, the density phn

(h, T ) was found to give the best overall fit for the joint
p.d.f. of wave amplitudes and scaled quarter periods measured from simulated data,
and also for the joint p.d.f of wave heights and scaled quarter periods measured from
real data. The joint density phn

(h, T ) was found to be a definite improvement over
the joint density, pLH(h, T ), of Longuet-Higgins (1983); the most important difference
being the better fit in the region of the high wave-period tail. This was found to be
the case for both simulated and measured wave data.

However, the approach of obtaining the p.d.f. of wave amplitude from that of
the wave envelope has limitations which have been discussed. These limitations
are particularly evident when comparing the measured p.d.f. of scaled zero-crossing
quarter periods with that of local zero-crossing wave periods predicted by the models.
The p.d.f. of local zero-crossing wave period does not appear to provide any obvious
improvement over that of Longuet-Higgins (1983). The limitations of the envelope
approach are also evident in the comparisons which show that none of the models
gave good predictions of the measured joint p.d.f.s of waveheight and total period.
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Appendix A. The equivalence of equation (4) and Longuet-Higgins’ (1975)
equation (A16)

Equation (4) is identical to Longuet-Higgins’ (1975) equation (A 16), rewritten here
for convenience as

pA∗φ̇∗
LH

(A∗, φ̇∗
LH) =

A∗2√
2πµ∗

2µ
∗
0

exp

(
−A∗2

2µ∗
0

)
exp

(
−A∗2φ̇∗2

LH

2µ∗
2

)
, (A 1)

where

φ̇∗
LH = φ̇∗ − ω∗,

ω∗ =
m∗

1

m∗
0

,

and where the central spectral moments are defined by

µ∗
n =

∫
(ω∗ − ω∗)nS∗(ω∗) dω∗, n = 0, 1, 2, . . . ,

giving

µ∗
0 = m∗

0,

µ∗
2 = m∗

2 − m∗2
1

m∗
0

.

See also the discussion around (11.91) in Ochi (1990, p. 297).
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